Calibration and empirical Bayes variable selection

نویسندگان

  • B EDWARD I. GEORGE
  • DEAN P. FOSTER
چکیده

For the problem of variable selection for the normal linear model, selection criteria such as , C p ,  and  have fixed dimensionality penalties. Such criteria are shown to correspond to selection of maximum posterior models under implicit hyperparameter choices for a particular hierarchical Bayes formulation. Based on this calibration, we propose empirical Bayes selection criteria that use hyperparameter estimates instead of fixed choices. For obtaining these estimates, both marginal and conditional maximum likelihood methods are considered. As opposed to traditional fixed penalty criteria, these empirical Bayes criteria have dimensionality penalties that depend on the data. Their performance is seen to approximate adaptively the performance of the best fixed-penalty criterion across a variety of orthogonal and nonorthogonal set-ups, including wavelet regression. Empirical Bayes shrinkage estimators of the selected coefficients are also proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Bayes vs. Fully Bayes Variable Selection

For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical B...

متن کامل

Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold

In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...

متن کامل

Efficient Empirical Bayes Variable Selection and Estimation in Linear Models

We propose an empirical Bayes method for variable selection and coefficient estimation in linear regression models. The method is based on a particular hierarchical Bayes formulation, and the empirical Bayes estimator is shown to be closely related to the LASSO estimator. Such a connection allows us to take advantage of the recently developed quick LASSO algorithm to compute the empirical Bayes...

متن کامل

Bayes and Empirical-bayes Multiplicity Adjustment in the Variable-selection Problem

This paper studies the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. The first goal of the paper is to clarify when, and how, multiplicity correction is automatic in Bayesian analysis, and contrast this multiplicity correction with the Bayesian Ockham’s-razor effect. Secondly, we contrast empirical-Bayes and fully Bayesian approaches to vari...

متن کامل

Multiple Testing, Empirical Bayes, and the Variable-Selection Problem

This paper studies the multiplicity-correction effect of standard Bayesian variableselection priors in linear regression. The first goal of the paper is to clarify when, and how, multiplicity correction is automatic in Bayesian analysis, and contrast this multiplicity correction with the Bayesian Ockham’s-razor effect. Secondly, we contrast empirical-Bayes and fully Bayesian approaches to varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997